If an atom contains one electron and one proton will it carry any charge or not

  1. 2.3 Atomic Structure and Symbolism
  2. 2.6: Protons, Neutrons, and Electrons in Atoms
  3. Naming monatomic ions and ionic compounds (article)


Download: If an atom contains one electron and one proton will it carry any charge or not
Size: 18.28 MB

2.3 Atomic Structure and Symbolism

Learning Objectives By the end of this section, you will be able to: • Write and interpret symbols that depict the atomic number, mass number, and charge of an atom or ion • Define the atomic mass unit and average atomic mass • Calculate average atomic mass and isotopic abundance The development of modern atomic theory revealed much about the inner structure of atoms. It was learned that an atom contains a very small nucleus composed of positively charged protons and uncharged neutrons, surrounded by a much larger volume of space containing negatively charged electrons. The nucleus contains the majority of an atom’s mass because protons and neutrons are much heavier than electrons, whereas electrons occupy almost all of an atom’s volume. The diameter of an atom is on the order of 10 −10 m, whereas the diameter of the nucleus is roughly 10 −15 m—about 100,000 times smaller. For a perspective about their relative sizes, consider this: If the nucleus were the size of a blueberry, the atom would be about the size of a football stadium ( Figure 2.11 If an atom could be expanded to the size of a football stadium, the nucleus would be the size of a single blueberry. (credit middle: modification of work by “babyknight”/Wikimedia Commons; credit right: modification of work by Paxson Woelber) Atoms—and the protons, neutrons, and electrons that compose them—are extremely small. For example, a carbon atom weighs less than 2 × × 10 −23 g, and an electron has a cha...

2.6: Protons, Neutrons, and Electrons in Atoms

\( \newcommand\) • • • • • • • • • • • • • • • • • Learning Objectives • Describe the locations, charges, and masses of the three main subatomic particles. • Determine the number of protons and electrons in an atom. • Write and interpret symbols that depict the atomic number, mass number, and charge of an atom or ion. • Define the atomic mass unit and average atomic mass Dalton's Atomic Theory explained a lot about matter, chemicals, and chemical reactions. Nevertheless, it was not entirely accurate, because contrary to what Dalton believed, atoms can, in fact, be broken apart into smaller subunits or subatomic particles. We have been talking about the electron in great detail, but there are two other particles of interest to us: protons and neutrons. We already learned that J. J. Thomson discovered a negatively charged particle, called the electron. Rutherford proposed that these electrons orbit a positive nucleus. In subsequent experiments, he found that there is a smaller positively charged particle in the nucleus, called a proton. There is also a third subatomic particle, known as a neutron. Electrons Electrons are one of three main types of particles that make up atoms. Unlike protons and neutrons, which consist of smaller, simpler particles, electrons are fundamental particles that do not consist of smaller particles. They are a type of fundamental particle called leptons. All leptons have an electric charge of \(-1\) or \(0\). Electrons are extremely small. The mass...

Naming monatomic ions and ionic compounds (article)

Atoms are electrically neutral because the number of protons, which carry a 1+ charge, in the nucleus of an atom is equal to the number of electrons, which carry a 1- charge, in the atom. The result is that the total positive charge of the protons cancels out the total negative charge of the electrons so that the net charge of the atom is zero. Most atoms, however, can either gain or lose electrons; when they do so, the number of electrons becomes different from the number of protons in the nucleus. The resulting charged species is called an ion. The opposite process can also occur. When a neutral atom gains one or more electrons, the number of electrons increases while the number of protons in the nucleus remains the same. The result is that the atom becomes an anion—an ion with a net negative charge. We can illustrate this by examining some very simple cations and anions, those formed when a single hydrogen atom loses or gains an electron. Note: Hydrogen is actually somewhat unusual in that it readily forms both cations and anions. Most elements much prefer to form only one or the other. In terms of its electron configuration, can you explain why hydrogen can form both cations and anions? Feel free to post in the comments at the end of the article! H + ~~~~~~~~~\text^-~~~~~~~~~~~~~~~~~~~ H − space, space, space, space, space, space, space, space, space, space, space, space, space, space, space, space, space, space, start text, H, end text, start superscript, minus, end s...

Tags: If an atom